Properties

Label 576.1132.1.a1.a1
Order $ 2^{6} \cdot 3^{2} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{48}.C_{12}$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Index: $1$
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $a^{3}, b^{42}, b^{12}, b^{3}, a^{6}, b^{16}, b^{24}, a^{4}b^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, and metacyclic (hence supersolvable, monomial, and metabelian).

Ambient group ($G$) information

Description: $C_{48}.C_{12}$
Order: \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2^3\times D_8:C_4.C_2)$
$\operatorname{Aut}(H)$ $C_3:(C_2^3\times D_8:C_4.C_2)$
$W$$D_{24}$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_{12}$
Normalizer:$C_{48}.C_{12}$
Complements:$C_1$
Maximal under-subgroups:$C_{24}.C_{12}$$C_{24}.C_{12}$$C_6\times C_{48}$$C_{48}.C_4$$C_{16}.C_{12}$

Other information

Möbius function$1$
Projective image$D_{24}$