Properties

Label 56899584.f.1536._.A
Order $ 2^{2} \cdot 3^{3} \cdot 7^{3} $
Index $ 2^{9} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7^3:C_3^2:D_6$
Order: \(37044\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 7^{3} \)
Index: \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\langle(1,19,12)(2,5,8,13,11,17)(3,7,20)(4,6,10,15,9,16)(18,21)(22,23), (1,19,12) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_2\times \PSL(2,7)\wr S_3$
Order: \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
Exponent: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,7)^3.D_6$
$\operatorname{Aut}(H)$ $C_2\times C_7^3.\He_3.Q_8.C_6$
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$512$
Möbius function not computed
Projective image not computed