Properties

Label 56882.4.7.a1.a1
Order $ 2 \cdot 17 \cdot 239 $
Index $ 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{239}:C_{34}$
Order: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Index: \(7\)
Exponent: \(8126\)\(\medspace = 2 \cdot 17 \cdot 239 \)
Generators: $b^{239}, a^{7}, b^{2}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a semidirect factor, nonabelian, a Hall subgroup, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.

Ambient group ($G$) information

Description: $C_{239}:C_{238}$
Order: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_7$
Order: \(7\)
Exponent: \(7\)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
$\operatorname{Aut}(H)$ $F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
$W$$C_{239}:C_{119}$, of order \(28441\)\(\medspace = 7 \cdot 17 \cdot 239 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{239}:C_{238}$
Complements:$C_7$
Minimal over-subgroups:$C_{239}:C_{238}$
Maximal under-subgroups:$C_{239}:C_{17}$$C_{478}$$C_{34}$

Other information

Möbius function$-1$
Projective image$C_{239}:C_{119}$