Properties

Label 56882.4.28441.a1.a1
Order $ 2 $
Index $ 7 \cdot 17 \cdot 239 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(28441\)\(\medspace = 7 \cdot 17 \cdot 239 \)
Exponent: \(2\)
Generators: $b^{239}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $2$-Sylow subgroup (hence a Hall subgroup), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_{239}:C_{238}$
Order: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Quotient group ($Q$) structure

Description: $C_{239}:C_{119}$
Order: \(28441\)\(\medspace = 7 \cdot 17 \cdot 239 \)
Exponent: \(28441\)\(\medspace = 7 \cdot 17 \cdot 239 \)
Automorphism Group: $F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_{239}$, of order \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{239}:C_{238}$
Normalizer:$C_{239}:C_{238}$
Complements:$C_{239}:C_{119}$
Minimal over-subgroups:$C_{478}$$C_{34}$$C_{14}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$-239$
Projective image$C_{239}:C_{119}$