Properties

Label 56882.2.239.a1.a1
Order $ 2 \cdot 7 \cdot 17 $
Index $ 239 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{238}$
Order: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Index: \(239\)
Exponent: \(238\)\(\medspace = 2 \cdot 7 \cdot 17 \)
Generators: $b^{1673}, b^{478}, a$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is maximal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{1673}:C_{34}$
Order: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Exponent: \(56882\)\(\medspace = 2 \cdot 7 \cdot 17 \cdot 239 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 17$.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{239}:(C_2\times C_{714})$
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{238}$
Normalizer:$C_{238}$
Normal closure:$C_{1673}:C_{34}$
Core:$C_{14}$
Minimal over-subgroups:$C_{1673}:C_{34}$
Maximal under-subgroups:$C_{119}$$C_{34}$$C_{14}$

Other information

Number of subgroups in this conjugacy class$239$
Möbius function$-1$
Projective image$C_{239}:C_{17}$