Properties

Label 56862.b.78.A
Order $ 3^{6} $
Index $ 2 \cdot 3 \cdot 13 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6$
Order: \(729\)\(\medspace = 3^{6} \)
Index: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Exponent: \(3\)
Generators: $bd^{2}fgh, gh^{2}, fgh^{2}, ce^{2}gh, de^{2}f^{2}gh, efg^{2}h^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), and a $p$-group (hence elementary and hyperelementary). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^7:C_{26}$
Order: \(56862\)\(\medspace = 2 \cdot 3^{7} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3\times C_{13}$
Order: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Automorphism Group: $S_3\times C_{12}$, of order \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Outer Automorphisms: $C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_{13}^2.C_6^2.C_2$
$\operatorname{Aut}(H)$ $\GL(6,3)$, of order \(84129611558952960\)\(\medspace = 2^{13} \cdot 3^{15} \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13^{2} \)
$W$$C_{26}$, of order \(26\)\(\medspace = 2 \cdot 13 \)

Related subgroups

Centralizer:$C_3^7$
Normalizer:$C_3^7:C_{26}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^7:C_{26}$