Properties

Label 56862.b
Order \( 2 \cdot 3^{7} \cdot 13 \)
Exponent \( 2 \cdot 3 \cdot 13 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \cdot 13 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{3} \cdot 3^{8} \cdot 13^{2} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \cdot 13 \)
Perm deg. $39$
Trans deg. $39$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 39 | (1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14), (1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10) >;
 
Copy content gap:G := Group( (1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14), (1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10) );
 
Copy content sage:G = PermutationGroup(['(1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14)', '(1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(608610068200128719435837809508882490629358477287607136951740383381926130174521373037808055389,56862)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 

Group information

Description:$C_3^7:C_{26}$
Order: \(56862\)\(\medspace = 2 \cdot 3^{7} \cdot 13 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^6.C_{13}^2.C_6^2.C_2$, of order \(8870472\)\(\medspace = 2^{3} \cdot 3^{8} \cdot 13^{2} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$ x 7, $C_{13}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 13 26 39
Elements 1 2187 2186 8748 26244 17496 56862
Conjugacy classes   1 1 85 12 12 12 123
Divisions 1 1 85 1 1 1 90
Autjugacy classes 1 1 7 4 4 4 21

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 12 24 26
Irr. complex chars.   26 13 0 0 84 123
Irr. rational chars. 2 1 2 1 84 90

Minimal presentations

Permutation degree:$39$
Transitive degree:$39$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 26 26 26
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid a^{26}=b^{3}=c^{3}=d^{3}=e^{3}=f^{3}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([9, -2, -13, -3, 3, 3, 3, 3, 3, 3, 18, 66692, 742376, 392187, 75828, 2349364, 303043, 533525, 599522, 976254, 1553658, 2714407, 1274848, 1707974, 1322585]); a,b,c,d,e,f,g,h := Explode([G.1, G.3, G.4, G.5, G.6, G.7, G.8, G.9]); AssignNames(~G, ["a", "a2", "b", "c", "d", "e", "f", "g", "h"]);
 
Copy content gap:G := PcGroupCode(608610068200128719435837809508882490629358477287607136951740383381926130174521373037808055389,56862); a := G.1; b := G.3; c := G.4; d := G.5; e := G.6; f := G.7; g := G.8; h := G.9;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(608610068200128719435837809508882490629358477287607136951740383381926130174521373037808055389,56862)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(608610068200128719435837809508882490629358477287607136951740383381926130174521373037808055389,56862)'); a = G.1; b = G.3; c = G.4; d = G.5; e = G.6; f = G.7; g = G.8; h = G.9;
 
Permutation group:Degree $39$ $\langle(1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 39 | (1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14), (1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10) >;
 
Copy content gap:G := Group( (1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14), (1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10) );
 
Copy content sage:G = PermutationGroup(['(1,29,18,4,33,21,7,34,22,12,38,25,15)(2,28,16,6,31,20,8,36,23,11,39,27,13,3,30,17,5,32,19,9,35,24,10,37,26,14)', '(1,33,24,13,4,34,25,16,8,39,30,20,11,2,32,22,15,5,36,26,18,9,38,28,19,12)(3,31,23,14,6,35,27,17,7,37,29,21,10)'])
 
Transitive group: 39T83 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_3^4$ . $F_{27}$ (2) $(C_3^6:C_{13})$ . $S_3$ $C_3^6$ . $(S_3\times C_{13})$ $C_3^3$ . $(C_3:F_{27})$ (2) all 5

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{26} \simeq C_{2} \times C_{13}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 12 normal subgroups, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_3^7:C_{26}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^7$ $G/G' \simeq$ $C_{26}$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_3^7:C_{26}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3^7$ $G/\operatorname{Fit} \simeq$ $C_{26}$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3^7:C_{26}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_3^7$ $G/\operatorname{soc} \simeq$ $C_{26}$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^7$
13-Sylow subgroup: $P_{ 13 } \simeq$ $C_{13}$

Subgroup diagram and profile

Series

Derived series $C_3^7:C_{26}$ $\rhd$ $C_3^7$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3^7:C_{26}$ $\rhd$ $C_3^7:C_{13}$ $\rhd$ $C_3^7$ $\rhd$ $C_3^4$ $\rhd$ $C_3$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3^7:C_{26}$ $\rhd$ $C_3^7$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $123 \times 123$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $90 \times 90$ rational character table.