Properties

Label 56862.b.6.a1
Order $ 3^{6} \cdot 13 $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6:C_{13}$
Order: \(9477\)\(\medspace = 3^{6} \cdot 13 \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(39\)\(\medspace = 3 \cdot 13 \)
Generators: $a^{2}, f, cd^{2}ef^{2}g^{2}h^{2}, deg, bc^{2}efg^{2}h, gh^{2}, ef^{2}h$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), nonabelian, monomial (hence solvable), metabelian, and an A-group. Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^7:C_{26}$
Order: \(56862\)\(\medspace = 2 \cdot 3^{7} \cdot 13 \)
Exponent: \(78\)\(\medspace = 2 \cdot 3 \cdot 13 \)
Derived length:$2$

The ambient group is nonabelian, metabelian (hence solvable), and an A-group. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_{13}^2.C_6^2.C_2$
$\operatorname{Aut}(H)$ $C_3^6.C_{13}^2.C_6.C_2$
$W$$C_3^3.F_{27}$, of order \(18954\)\(\medspace = 2 \cdot 3^{6} \cdot 13 \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^7:C_{26}$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^7:C_{26}$