Properties

Label 5647152.f.343.A
Order $ 2^{4} \cdot 3 \cdot 7^{3} $
Index $ 7^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_7^3:S_4$
Order: \(16464\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{3} \)
Index: \(343\)\(\medspace = 7^{3} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Generators: $ad^{12}e^{4}f^{4}g^{3}, d^{7}e^{2}f^{4}g^{5}, ef^{6}g^{4}i, b^{2}cde^{5}h^{4}, d^{2}e^{5}f^{3}gh^{2}i, fg^{2}i^{2}, b^{3}e^{6}f^{6}g^{6}hi^{2}, cd^{8}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is maximal, nonabelian, and monomial (hence solvable).

Ambient group ($G$) information

Description: $C_7^3.D_7\wr S_3$
Order: \(5647152\)\(\medspace = 2^{4} \cdot 3 \cdot 7^{6} \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_7^6.A_4.C_6^2.C_2$
$\operatorname{Aut}(H)$ $D_7^3:(C_6\times S_3)$, of order \(98784\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 7^{3} \)
$W$$C_7^3:S_4$, of order \(8232\)\(\medspace = 2^{3} \cdot 3 \cdot 7^{3} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_7^3:S_4$
Normal closure:$C_7^3.D_7\wr S_3$
Core:$C_7^3$

Other information

Number of subgroups in this autjugacy class$343$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_7^3.D_7\wr S_3$