Properties

Label 560.78.1.a1.a1
Order $ 2^{4} \cdot 5 \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{35}:Q_{16}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Index: $1$
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Generators: $a, c^{5}, b^{6}, b^{4}, b, c^{21}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{35}:Q_{16}$
Order: \(560\)\(\medspace = 2^{4} \cdot 5 \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{70}.(C_2^4\times C_{12})$
$\operatorname{Aut}(H)$ $C_{70}.(C_2^4\times C_{12})$
$W$$C_{35}:D_4$, of order \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_{35}:Q_{16}$
Complements:$C_1$
Maximal under-subgroups:$Q_8\times C_{35}$$C_{35}:Q_8$$C_{35}:C_8$$C_7:Q_{16}$$C_5:Q_{16}$

Other information

Möbius function$1$
Projective image$C_{35}:D_4$