Properties

Label 56.11.1.a1.a1
Order $ 2^{3} \cdot 7 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$F_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Index: $1$
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Generators: $\langle(2,6,8,7,4,5,3), (1,4)(2,3)(5,8)(6,7), (1,7)(2,8)(3,5)(4,6), (1,5)(2,6)(3,7)(4,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, monomial, metabelian, and an A-group.

Ambient group ($G$) information

Description: $F_8$
Order: \(56\)\(\medspace = 2^{3} \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\operatorname{Aut}(H)$ $F_8:C_3$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$W$$F_8$, of order \(56\)\(\medspace = 2^{3} \cdot 7 \)

Related subgroups

Centralizer:$C_1$
Normalizer:$F_8$
Complements:$C_1$
Maximal under-subgroups:$C_2^3$$C_7$

Other information

Möbius function$1$
Projective image$F_8$