Properties

Label 559872.lw.24.A
Order $ 2^{5} \cdot 3^{6} $
Index $ 2^{3} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(23328\)\(\medspace = 2^{5} \cdot 3^{6} \)
Index: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: not computed
Generators: $\langle(1,17,18), (8,10)(9,11)(13,15)(14,16), (2,16,14)(3,15,13)(4,11,9), (4,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is a direct factor, a semidirect factor, elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $C_3^6.C_2^5:S_4$
Order: \(559872\)\(\medspace = 2^{8} \cdot 3^{7} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $S_4$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_4$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^6.C_2^7:S_4$, of order \(2239488\)\(\medspace = 2^{10} \cdot 3^{7} \)
$\operatorname{Aut}(H)$ not computed
$W$$C_3^6:C_2^3:S_4$, of order \(139968\)\(\medspace = 2^{6} \cdot 3^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^6.C_2^5:S_4$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.C_2^5:S_4$