Properties

Label 55584.k.12.c1.a1
Order $ 2^{3} \cdot 3 \cdot 193 $
Index $ 2^{2} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{4632}$
Order: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(4632\)\(\medspace = 2^{3} \cdot 3 \cdot 193 \)
Generators: $b^{1158}, b^{2316}, b^{24}, b^{1544}, b^{579}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial) and cyclic (hence abelian, elementary ($p = 2,3,193$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{4632}.C_{12}$
Order: \(55584\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 193 \)
Exponent: \(9264\)\(\medspace = 2^{4} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Quotient group ($Q$) structure

Description: $C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5:F_5^2$, of order \(3557376\)\(\medspace = 2^{11} \cdot 3^{2} \cdot 193 \)
$\operatorname{Aut}(H)$ $C_2^3\times C_{192}$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$W$$C_{12}$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{4632}$
Normalizer:$C_{4632}.C_{12}$
Minimal over-subgroups:$C_{24}\times C_{193}:C_3$$C_3\times C_{193}:(C_2\times C_8)$
Maximal under-subgroups:$C_{2316}$$C_{1544}$$C_{24}$

Other information

Möbius function$0$
Projective image$C_{193}:C_{12}$