Properties

Label 55296.de.27.a1
Order $ 2^{11} $
Index $ 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2048\)\(\medspace = 2^{11} \)
Index: \(27\)\(\medspace = 3^{3} \)
Exponent: not computed
Generators: $\langle(1,6)(4,5)(9,16)(10,14)(11,17)(12,18), (1,5)(4,6), (5,6)(7,8), (1,7,5,3) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: not computed
Derived length: not computed

The subgroup is nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $A_4^2:C_2^4.S_4$
Order: \(55296\)\(\medspace = 2^{11} \cdot 3^{3} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$A_4^2.A_4^2.C_2^6.C_2$
$\operatorname{Aut}(H)$ not computed
$W$$C_2^4:D_4$, of order \(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2^6.C_2^5$
Normal closure:$A_4^2:C_2^4.S_4$
Core:$C_2^9$

Other information

Number of subgroups in this autjugacy class$27$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$A_4^2.C_2^3:S_4$