Properties

Label 544.38.17.a1.a1
Order $ 2^{5} $
Index $ 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2.C_4^2$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(17\)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $a, c^{17}$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is maximal, nonabelian, a $2$-Sylow subgroup (hence nilpotent, solvable, supersolvable, a Hall subgroup, and monomial), a $p$-group (hence elementary and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_{34}.C_4^2$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{17}:((C_2^6\times C_{16}).C_2)$
$\operatorname{Aut}(H)$ $C_2\wr S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(S)$$C_2^3\wr C_2$, of order \(128\)\(\medspace = 2^{7} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(16\)\(\medspace = 2^{4} \)
$W$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)

Related subgroups

Centralizer:$C_2^3$
Normalizer:$C_2.C_4^2$
Normal closure:$C_{34}.C_4^2$
Core:$C_2^2\times C_4$
Minimal over-subgroups:$C_{34}.C_4^2$
Maximal under-subgroups:$C_2^2\times C_4$$C_2^2\times C_4$$C_2^2\times C_4$

Other information

Number of subgroups in this conjugacy class$17$
Möbius function$-1$
Projective image$D_{34}$