Subgroup ($H$) information
Description: | $C_8$ |
Order: | \(8\)\(\medspace = 2^{3} \) |
Index: | \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Exponent: | \(8\)\(\medspace = 2^{3} \) |
Generators: |
$\left(\begin{array}{rr}
127 & 0 \\
0 & 10
\end{array}\right), \left(\begin{array}{rr}
136 & 0 \\
0 & 136
\end{array}\right), \left(\begin{array}{rr}
100 & 0 \\
0 & 100
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.
Ambient group ($G$) information
Description: | $\OD_{16}:C_{34}$ |
Order: | \(544\)\(\medspace = 2^{5} \cdot 17 \) |
Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
Nilpotency class: | $2$ |
Derived length: | $2$ |
The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.
Quotient group ($Q$) structure
Description: | $C_2\times C_{34}$ |
Order: | \(68\)\(\medspace = 2^{2} \cdot 17 \) |
Exponent: | \(34\)\(\medspace = 2 \cdot 17 \) |
Automorphism Group: | $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Outer Automorphisms: | $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
$\operatorname{Aut}(H)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\operatorname{res}(S)$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(128\)\(\medspace = 2^{7} \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Other information
Möbius function | $-2$ |
Projective image | $C_2^2\times C_{34}$ |