Properties

Label 544.193.68.d1.c1
Order $ 2^{3} $
Index $ 2^{2} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_8$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\left(\begin{array}{rr} 127 & 0 \\ 0 & 10 \end{array}\right), \left(\begin{array}{rr} 136 & 0 \\ 0 & 136 \end{array}\right), \left(\begin{array}{rr} 100 & 0 \\ 0 & 100 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a $p$-group.

Ambient group ($G$) information

Description: $\OD_{16}:C_{34}$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2\times C_{34}$
Order: \(68\)\(\medspace = 2^{2} \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Outer Automorphisms: $S_3\times C_{16}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\operatorname{res}(S)$$C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(128\)\(\medspace = 2^{7} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{136}$
Normalizer:$\OD_{16}:C_{34}$
Minimal over-subgroups:$C_{136}$$C_2\times C_8$$\OD_{16}$$\OD_{16}$
Maximal under-subgroups:$C_4$
Autjugate subgroups:544.193.68.d1.a1544.193.68.d1.b1

Other information

Möbius function$-2$
Projective image$C_2^2\times C_{34}$