Properties

Label 544.193.136.b1.a1
Order $ 2^{2} $
Index $ 2^{3} \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 136 & 0 \\ 0 & 136 \end{array}\right), \left(\begin{array}{rr} 100 & 0 \\ 0 & 100 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, and a $p$-group.

Ambient group ($G$) information

Description: $\OD_{16}:C_{34}$
Order: \(544\)\(\medspace = 2^{5} \cdot 17 \)
Exponent: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Nilpotency class:$2$
Derived length:$2$

The ambient group is nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_2^2\times C_{34}$
Order: \(136\)\(\medspace = 2^{3} \cdot 17 \)
Exponent: \(34\)\(\medspace = 2 \cdot 17 \)
Automorphism Group: $C_{16}\times \GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_{16}\times \GL(3,2)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group) and elementary for $p = 2$ (hence hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times C_{16}\times S_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2$, of order \(2\)
$\card{\operatorname{ker}(\operatorname{res})}$\(768\)\(\medspace = 2^{8} \cdot 3 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$\OD_{16}:C_{34}$
Normalizer:$\OD_{16}:C_{34}$
Minimal over-subgroups:$C_{68}$$C_2\times C_4$$C_2\times C_4$$C_2\times C_4$$C_8$$C_8$$C_8$$C_8$
Maximal under-subgroups:$C_2$

Other information

Möbius function$8$
Projective image$C_2^2\times C_{34}$