Properties

Label 5400.q.6.b1.a1
Order $ 2^{2} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}):D_6$
Order: \(900\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5^{2} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ac^{3}e^{10}, e^{3}, c^{2}d^{10}, d^{10}, bc^{3}d^{12}e^{10}, d^{3}e^{12}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), and an A-group.

Ambient group ($G$) information

Description: $C_{15}^2:(C_2\times D_6)$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $S_3$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_1$, of order $1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2.\He_3.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_{15}^2.C_{12}.C_2^3$
$W$$C_{15}^2:(C_2\times D_6)$, of order \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:(C_2\times D_6)$
Complements:$S_3$ $S_3$ $S_3$ $S_3$ $S_3$ $S_3$
Minimal over-subgroups:$C_{15}^2:D_6$$S_3\times C_5^2:D_6$
Maximal under-subgroups:$C_3\times C_5^2:C_6$$(C_5\times C_{15}):S_3$$(C_5\times C_{15}):S_3$$C_{15}:D_{10}$$C_5^2:D_6$$C_6:S_3$

Other information

Möbius function$3$
Projective image$C_{15}^2:(C_2\times D_6)$