Properties

Label 5400.q.150.f1.a1
Order $ 2^{2} \cdot 3^{2} $
Index $ 2 \cdot 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:S_3$
Order: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Index: \(150\)\(\medspace = 2 \cdot 3 \cdot 5^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $ac^{3}e^{10}, bc^{3}d^{12}e^{10}, c^{2}d^{10}, d^{10}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_{15}^2:(C_2\times D_6)$
Order: \(5400\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^2.\He_3.C_4.C_2^3$
$\operatorname{Aut}(H)$ $C_2\times C_3^2:\GL(2,3)$, of order \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
$W$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6.S_3^2$
Normal closure:$(C_5\times C_{15}):D_6$
Core:$C_3$
Minimal over-subgroups:$(C_5\times C_{15}):D_6$$C_3^2:D_6$$S_3\times D_6$
Maximal under-subgroups:$C_3\times C_6$$C_3:S_3$$C_3:S_3$$D_6$$D_6$

Other information

Number of subgroups in this conjugacy class$25$
Möbius function$-3$
Projective image$C_{15}^2:(C_2\times D_6)$