Properties

Label 540.76.3.a1.c1
Order $ 2^{2} \cdot 3^{2} \cdot 5 $
Index $ 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times D_{30}$
Order: \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \)
Index: \(3\)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a, c, bc^{2}d^{20}, d^{15}, d^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $C_3^2:D_{30}$
Order: \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{30}:C_{12}:\GL(2,3)$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\operatorname{res}(S)$$C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(3\)
$W$$D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times D_{30}$
Normal closure:$C_3^2:D_{30}$
Core:$C_3\times C_{30}$
Minimal over-subgroups:$C_3^2:D_{30}$
Maximal under-subgroups:$C_3\times C_{30}$$C_3\times D_{15}$$C_3\times D_{15}$$C_3\times D_{10}$$D_{30}$$C_6\times S_3$
Autjugate subgroups:540.76.3.a1.a1540.76.3.a1.b1540.76.3.a1.d1

Other information

Number of subgroups in this conjugacy class$3$
Möbius function$-1$
Projective image$C_3:D_{15}$