Subgroup ($H$) information
Description: | $C_3\times D_{30}$ |
Order: | \(180\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 5 \) |
Index: | \(3\) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Generators: |
$a, c, bc^{2}d^{20}, d^{15}, d^{6}$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_3^2:D_{30}$ |
Order: | \(540\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5 \) |
Exponent: | \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{30}:C_{12}:\GL(2,3)$, of order \(17280\)\(\medspace = 2^{7} \cdot 3^{3} \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\operatorname{res}(S)$ | $C_2\times D_6\times F_5$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $D_{15}$, of order \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $3$ |
Möbius function | $-1$ |
Projective image | $C_3:D_{15}$ |