Properties

Label 54.9.54.a1.a1
Order $ 1 $
Index $ 2 \cdot 3^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_1$
Order: $1$
Index: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: $1$
Generators:
Nilpotency class: $0$
Derived length: $0$

The subgroup is the commutator subgroup (hence characteristic and normal), a direct factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group (for every $p$), perfect, and rational.

Ambient group ($G$) information

Description: $C_3\times C_{18}$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Nilpotency class:$1$
Derived length:$1$

The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Quotient group ($Q$) structure

Description: $C_3\times C_{18}$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Outer Automorphisms: $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_{18}$
Normalizer:$C_3\times C_{18}$
Complements:$C_3\times C_{18}$
Minimal over-subgroups:$C_3$$C_3$$C_3$$C_3$$C_2$

Other information

Möbius function$0$
Projective image$C_3\times C_{18}$