Subgroup ($H$) information
Description: | $C_3$ |
Order: | \(3\) |
Index: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(3\) |
Generators: |
$b^{6}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the Frattini subgroup (hence characteristic and normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), central, a $p$-group, and simple.
Ambient group ($G$) information
Description: | $C_3\times C_{18}$ |
Order: | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The ambient group is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Quotient group ($Q$) structure
Description: | $C_3\times C_6$ |
Order: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Automorphism Group: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Outer Automorphisms: | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 3$ (hence hyperelementary), and metacyclic.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2$, of order \(2\) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(54\)\(\medspace = 2 \cdot 3^{3} \) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times C_{18}$ | ||||
Normalizer: | $C_3\times C_{18}$ | ||||
Minimal over-subgroups: | $C_3^2$ | $C_9$ | $C_9$ | $C_9$ | $C_6$ |
Maximal under-subgroups: | $C_1$ |
Other information
Möbius function | $-3$ |
Projective image | $C_3\times C_6$ |