Properties

Label 54.7.2.a1.a1
Order $ 3^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times C_9$
Order: \(27\)\(\medspace = 3^{3} \)
Index: \(2\)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $b, c^{7}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the commutator subgroup (hence characteristic and normal), the Fitting subgroup (hence nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, abelian (hence metabelian and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_3:D_9$
Order: \(54\)\(\medspace = 2 \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)
$\operatorname{Aut}(H)$ $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(27\)\(\medspace = 3^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_9$
Normalizer:$C_3:D_9$
Complements:$C_2$
Minimal over-subgroups:$C_3:D_9$
Maximal under-subgroups:$C_3^2$$C_9$$C_9$$C_9$

Other information

Möbius function$-1$
Projective image$C_3:D_9$