Properties

Label 5373.15.1791.a1.a1
Order $ 3 $
Index $ 3^{2} \cdot 199 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3$
Order: \(3\)
Index: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(3\)
Generators: $b^{199}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a direct factor, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{597}:C_9$
Order: \(5373\)\(\medspace = 3^{3} \cdot 199 \)
Exponent: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{199}:C_9$
Order: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Exponent: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Automorphism Group: $F_{199}$, of order \(39402\)\(\medspace = 2 \cdot 3^{2} \cdot 11 \cdot 199 \)
Outer Automorphisms: $C_{22}$, of order \(22\)\(\medspace = 2 \cdot 11 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 3$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{199}:(C_{11}:(C_{18}\times S_3))$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_{597}:C_9$
Normalizer:$C_{597}:C_9$
Complements:$C_{199}:C_9$ $C_{199}:C_9$ $C_{199}:C_9$
Minimal over-subgroups:$C_{597}$$C_3^2$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{199}:C_9$