Properties

Label 5373.15
Order \( 3^{3} \cdot 199 \)
Exponent \( 3^{2} \cdot 199 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 3^{3} \)
$\card{Z(G)}$ \( 3 \)
$\card{\Aut(G)}$ \( 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \cdot 3 \cdot 11 \)
Perm deg. $202$
Trans deg. $597$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := SmallGroup(5373, 15);
 
Copy content gap:G := SmallGroup(5373, 15);
 
Copy content sage_gap:G = libgap.SmallGroup(5373, 15)
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(2,4,14,5,15,26,8,17,7)(3,9,29,10,30,36,12,32,11)(6,20,59,21,60,71,24,62,23)(13,39,47,40,108,113,42,100,41)(16,48,74,49,127,77,50,76,25)(18,22,66,52,67,99,53,69,35)(19,55,73,56,132,96,38,106,57)(27,31,43,79,88,116,81,90,80)(28,83,97,34,95,115,64,139,58)(33,92,102,93,171,104,94,103,37)(44,114,85,118,131,98,63,51,119)(45,120,154,82,109,91,121,86,70)(46,122,163,123,162,78,125,174,124)(54,134,129,135,153,183,117,172,112)(61,142,157,143,199,160,144,159,75)(65,145,189,146,150,128,107,179,147)(68,140,72,89,136,156,152,164,151)(84,165,182,111,133,194,138,185,166)(87,158,149,167,173,101,169,161,168)(105,110,137,176,180,195,178,175,177)(126,148,193,186,196,184,188,170,187)(130,190,141,181,197,198,192,155,191)', '(200,201,202)', '(2,5,8)(3,10,12)(4,15,17)(6,21,24)(7,14,26)(9,30,32)(11,29,36)(13,40,42)(16,49,50)(18,52,53)(19,56,38)(20,60,62)(22,67,69)(23,59,71)(25,74,77)(27,79,81)(28,34,64)(31,88,90)(33,93,94)(35,66,99)(37,102,104)(39,108,100)(41,47,113)(43,116,80)(44,118,63)(45,82,121)(46,123,125)(48,127,76)(51,114,131)(54,135,117)(55,132,106)(57,73,96)(58,97,115)(61,143,144)(65,146,107)(68,89,152)(70,154,91)(72,156,151)(75,157,160)(78,124,163)(83,95,139)(84,111,138)(85,98,119)(86,120,109)(87,167,169)(92,171,103)(101,168,149)(105,176,178)(110,180,175)(112,129,183)(122,162,174)(126,186,188)(128,147,189)(130,181,192)(133,185,165)(134,153,172)(136,164,140)(137,195,177)(141,198,191)(142,199,159)(145,150,179)(148,196,170)(155,190,197)(158,173,161)(166,182,194)(184,187,193)', '(1,2,6,22,68,83,127,180,176,191,190,148,65,21,64,42,115,170,91,32,86,29,85,33,9,31,89,134,192,165,135,195,198,151,119,168,101,36,100,76,161,126,47,15,46,92,166,110,39,109,93,156,178,194,144,77,82,27,7,25,75,158,139,88,154,197,137,55,125,118,81,163,79,50,113,184,153,69,146,97,116,185,114,41,112,74,60,123,53,133,84,28,8,10,34,96,172,159,173,147,182,162,177,140,58,19,5,12,38,107,145,90,167,108,102,72,23,70,150,67,57,138,80,164,155,71,94,66,149,99,120,169,95,142,193,131,52,132,122,105,37,11,35,98,104,175,189,160,129,49,63,20,61,128,48,87,30,59,141,174,103,62,26,78,124,121,183,186,199,152,179,196,136,54,18,4,16,45,14,44,17,51,130,73,24,56,40,111,181,187,188,157,143,171,106,117,43,13,3)'])
 

Group information

Description:$C_{597}:C_9$
Order: \(5373\)\(\medspace = 3^{3} \cdot 199 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(1791\)\(\medspace = 3^{2} \cdot 199 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_{199}:(C_{11}:(C_{18}\times S_3))$, of order \(236412\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 11 \cdot 199 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_3$ x 3, $C_{199}$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 3$, and an A-group.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 3 9 199 597
Elements 1 1196 3582 198 396 5373
Conjugacy classes   1 8 18 22 44 93
Divisions 1 4 3 1 1 10
Autjugacy classes 1 5 6 1 1 14

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 6 9 198 396
Irr. complex chars.   27 0 0 66 0 0 93
Irr. rational chars. 1 4 3 0 1 1 10

Minimal presentations

Permutation degree:$202$
Transitive degree:$597$
Rank: $2$
Inequivalent generating pairs: $72$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 9 18 396
Arbitrary 9 18 200

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid a^{9}=b^{597}=1, b^{a}=b^{43} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([4, -3, -3, -3, -199, 12, 4646, 3822, 46, 18579, 15271]); a,b := Explode([G.1, G.3]); AssignNames(~G, ["a", "a3", "b", "b3"]);
 
Copy content gap:G := PcGroupCode(370025089321816599448496552856791,5373); a := G.1; b := G.3;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(370025089321816599448496552856791,5373)'); a = G.1; b = G.3;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(370025089321816599448496552856791,5373)'); a = G.1; b = G.3;
 
Permutation group:Degree $202$ $\langle(2,4,14,5,15,26,8,17,7)(3,9,29,10,30,36,12,32,11)(6,20,59,21,60,71,24,62,23) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 202 | (2,4,14,5,15,26,8,17,7)(3,9,29,10,30,36,12,32,11)(6,20,59,21,60,71,24,62,23)(13,39,47,40,108,113,42,100,41)(16,48,74,49,127,77,50,76,25)(18,22,66,52,67,99,53,69,35)(19,55,73,56,132,96,38,106,57)(27,31,43,79,88,116,81,90,80)(28,83,97,34,95,115,64,139,58)(33,92,102,93,171,104,94,103,37)(44,114,85,118,131,98,63,51,119)(45,120,154,82,109,91,121,86,70)(46,122,163,123,162,78,125,174,124)(54,134,129,135,153,183,117,172,112)(61,142,157,143,199,160,144,159,75)(65,145,189,146,150,128,107,179,147)(68,140,72,89,136,156,152,164,151)(84,165,182,111,133,194,138,185,166)(87,158,149,167,173,101,169,161,168)(105,110,137,176,180,195,178,175,177)(126,148,193,186,196,184,188,170,187)(130,190,141,181,197,198,192,155,191), (200,201,202), (2,5,8)(3,10,12)(4,15,17)(6,21,24)(7,14,26)(9,30,32)(11,29,36)(13,40,42)(16,49,50)(18,52,53)(19,56,38)(20,60,62)(22,67,69)(23,59,71)(25,74,77)(27,79,81)(28,34,64)(31,88,90)(33,93,94)(35,66,99)(37,102,104)(39,108,100)(41,47,113)(43,116,80)(44,118,63)(45,82,121)(46,123,125)(48,127,76)(51,114,131)(54,135,117)(55,132,106)(57,73,96)(58,97,115)(61,143,144)(65,146,107)(68,89,152)(70,154,91)(72,156,151)(75,157,160)(78,124,163)(83,95,139)(84,111,138)(85,98,119)(86,120,109)(87,167,169)(92,171,103)(101,168,149)(105,176,178)(110,180,175)(112,129,183)(122,162,174)(126,186,188)(128,147,189)(130,181,192)(133,185,165)(134,153,172)(136,164,140)(137,195,177)(141,198,191)(142,199,159)(145,150,179)(148,196,170)(155,190,197)(158,173,161)(166,182,194)(184,187,193), (1,2,6,22,68,83,127,180,176,191,190,148,65,21,64,42,115,170,91,32,86,29,85,33,9,31,89,134,192,165,135,195,198,151,119,168,101,36,100,76,161,126,47,15,46,92,166,110,39,109,93,156,178,194,144,77,82,27,7,25,75,158,139,88,154,197,137,55,125,118,81,163,79,50,113,184,153,69,146,97,116,185,114,41,112,74,60,123,53,133,84,28,8,10,34,96,172,159,173,147,182,162,177,140,58,19,5,12,38,107,145,90,167,108,102,72,23,70,150,67,57,138,80,164,155,71,94,66,149,99,120,169,95,142,193,131,52,132,122,105,37,11,35,98,104,175,189,160,129,49,63,20,61,128,48,87,30,59,141,174,103,62,26,78,124,121,183,186,199,152,179,196,136,54,18,4,16,45,14,44,17,51,130,73,24,56,40,111,181,187,188,157,143,171,106,117,43,13,3) >;
 
Copy content gap:G := Group( (2,4,14,5,15,26,8,17,7)(3,9,29,10,30,36,12,32,11)(6,20,59,21,60,71,24,62,23)(13,39,47,40,108,113,42,100,41)(16,48,74,49,127,77,50,76,25)(18,22,66,52,67,99,53,69,35)(19,55,73,56,132,96,38,106,57)(27,31,43,79,88,116,81,90,80)(28,83,97,34,95,115,64,139,58)(33,92,102,93,171,104,94,103,37)(44,114,85,118,131,98,63,51,119)(45,120,154,82,109,91,121,86,70)(46,122,163,123,162,78,125,174,124)(54,134,129,135,153,183,117,172,112)(61,142,157,143,199,160,144,159,75)(65,145,189,146,150,128,107,179,147)(68,140,72,89,136,156,152,164,151)(84,165,182,111,133,194,138,185,166)(87,158,149,167,173,101,169,161,168)(105,110,137,176,180,195,178,175,177)(126,148,193,186,196,184,188,170,187)(130,190,141,181,197,198,192,155,191), (200,201,202), (2,5,8)(3,10,12)(4,15,17)(6,21,24)(7,14,26)(9,30,32)(11,29,36)(13,40,42)(16,49,50)(18,52,53)(19,56,38)(20,60,62)(22,67,69)(23,59,71)(25,74,77)(27,79,81)(28,34,64)(31,88,90)(33,93,94)(35,66,99)(37,102,104)(39,108,100)(41,47,113)(43,116,80)(44,118,63)(45,82,121)(46,123,125)(48,127,76)(51,114,131)(54,135,117)(55,132,106)(57,73,96)(58,97,115)(61,143,144)(65,146,107)(68,89,152)(70,154,91)(72,156,151)(75,157,160)(78,124,163)(83,95,139)(84,111,138)(85,98,119)(86,120,109)(87,167,169)(92,171,103)(101,168,149)(105,176,178)(110,180,175)(112,129,183)(122,162,174)(126,186,188)(128,147,189)(130,181,192)(133,185,165)(134,153,172)(136,164,140)(137,195,177)(141,198,191)(142,199,159)(145,150,179)(148,196,170)(155,190,197)(158,173,161)(166,182,194)(184,187,193), (1,2,6,22,68,83,127,180,176,191,190,148,65,21,64,42,115,170,91,32,86,29,85,33,9,31,89,134,192,165,135,195,198,151,119,168,101,36,100,76,161,126,47,15,46,92,166,110,39,109,93,156,178,194,144,77,82,27,7,25,75,158,139,88,154,197,137,55,125,118,81,163,79,50,113,184,153,69,146,97,116,185,114,41,112,74,60,123,53,133,84,28,8,10,34,96,172,159,173,147,182,162,177,140,58,19,5,12,38,107,145,90,167,108,102,72,23,70,150,67,57,138,80,164,155,71,94,66,149,99,120,169,95,142,193,131,52,132,122,105,37,11,35,98,104,175,189,160,129,49,63,20,61,128,48,87,30,59,141,174,103,62,26,78,124,121,183,186,199,152,179,196,136,54,18,4,16,45,14,44,17,51,130,73,24,56,40,111,181,187,188,157,143,171,106,117,43,13,3) );
 
Copy content sage:G = PermutationGroup(['(2,4,14,5,15,26,8,17,7)(3,9,29,10,30,36,12,32,11)(6,20,59,21,60,71,24,62,23)(13,39,47,40,108,113,42,100,41)(16,48,74,49,127,77,50,76,25)(18,22,66,52,67,99,53,69,35)(19,55,73,56,132,96,38,106,57)(27,31,43,79,88,116,81,90,80)(28,83,97,34,95,115,64,139,58)(33,92,102,93,171,104,94,103,37)(44,114,85,118,131,98,63,51,119)(45,120,154,82,109,91,121,86,70)(46,122,163,123,162,78,125,174,124)(54,134,129,135,153,183,117,172,112)(61,142,157,143,199,160,144,159,75)(65,145,189,146,150,128,107,179,147)(68,140,72,89,136,156,152,164,151)(84,165,182,111,133,194,138,185,166)(87,158,149,167,173,101,169,161,168)(105,110,137,176,180,195,178,175,177)(126,148,193,186,196,184,188,170,187)(130,190,141,181,197,198,192,155,191)', '(200,201,202)', '(2,5,8)(3,10,12)(4,15,17)(6,21,24)(7,14,26)(9,30,32)(11,29,36)(13,40,42)(16,49,50)(18,52,53)(19,56,38)(20,60,62)(22,67,69)(23,59,71)(25,74,77)(27,79,81)(28,34,64)(31,88,90)(33,93,94)(35,66,99)(37,102,104)(39,108,100)(41,47,113)(43,116,80)(44,118,63)(45,82,121)(46,123,125)(48,127,76)(51,114,131)(54,135,117)(55,132,106)(57,73,96)(58,97,115)(61,143,144)(65,146,107)(68,89,152)(70,154,91)(72,156,151)(75,157,160)(78,124,163)(83,95,139)(84,111,138)(85,98,119)(86,120,109)(87,167,169)(92,171,103)(101,168,149)(105,176,178)(110,180,175)(112,129,183)(122,162,174)(126,186,188)(128,147,189)(130,181,192)(133,185,165)(134,153,172)(136,164,140)(137,195,177)(141,198,191)(142,199,159)(145,150,179)(148,196,170)(155,190,197)(158,173,161)(166,182,194)(184,187,193)', '(1,2,6,22,68,83,127,180,176,191,190,148,65,21,64,42,115,170,91,32,86,29,85,33,9,31,89,134,192,165,135,195,198,151,119,168,101,36,100,76,161,126,47,15,46,92,166,110,39,109,93,156,178,194,144,77,82,27,7,25,75,158,139,88,154,197,137,55,125,118,81,163,79,50,113,184,153,69,146,97,116,185,114,41,112,74,60,123,53,133,84,28,8,10,34,96,172,159,173,147,182,162,177,140,58,19,5,12,38,107,145,90,167,108,102,72,23,70,150,67,57,138,80,164,155,71,94,66,149,99,120,169,95,142,193,131,52,132,122,105,37,11,35,98,104,175,189,160,129,49,63,20,61,128,48,87,30,59,141,174,103,62,26,78,124,121,183,186,199,152,179,196,136,54,18,4,16,45,14,44,17,51,130,73,24,56,40,111,181,187,188,157,143,171,106,117,43,13,3)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 1 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 0 \\ 0 & 175 \end{array}\right), \left(\begin{array}{rr} 106 & 0 \\ 0 & 92 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{199})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(199) | [[1, 1, 0, 1], [1, 0, 0, 175], [106, 0, 0, 92]] >;
 
Copy content gap:G := Group([[[ Z(199)^0, Z(199)^0 ], [ 0*Z(199), Z(199)^0 ]], [[ Z(199)^0, 0*Z(199) ], [ 0*Z(199), Z(199)^22 ]], [[ Z(199)^66, 0*Z(199) ], [ 0*Z(199), Z(199)^132 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(199), 2, 2) G = MatrixGroup([MS([[1, 1], [0, 1]]), MS([[1, 0], [0, 175]]), MS([[106, 0], [0, 92]])])
 
Direct product: $C_3$ $\, \times\, $ $(C_{199}:C_9)$
Semidirect product: $C_{597}$ $\,\rtimes\,$ $C_9$ $(C_{199}:C_3)$ $\,\rtimes\,$ $C_9$ (2) $C_{199}$ $\,\rtimes\,$ $(C_3\times C_9)$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(C_{597}:C_3)$ . $C_3$ $(C_{199}:C_3)$ . $C_3^2$ more information

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{3} \times C_{9} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1604 subgroups in 20 conjugacy classes, 12 normal (7 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_3$ $G/Z \simeq$ $C_{199}:C_9$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{199}$ $G/G' \simeq$ $C_3\times C_9$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $C_{597}:C_9$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{597}$ $G/\operatorname{Fit} \simeq$ $C_9$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_{597}:C_9$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{597}$ $G/\operatorname{soc} \simeq$ $C_9$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3\times C_9$
199-Sylow subgroup: $P_{ 199 } \simeq$ $C_{199}$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $C_{597}:C_9$ $\rhd$ $C_{199}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_{597}:C_9$ $\rhd$ $C_{199}:C_9$ $\rhd$ $C_{199}:C_3$ $\rhd$ $C_{199}$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_{597}:C_9$ $\rhd$ $C_{199}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_3$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 5 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $93 \times 93$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

1A 3A 3B 3C 3D 9A 9B 9C 199A 597A
Size 1 2 398 398 398 1194 1194 1194 198 396
3 P 1A 3A 3B 3C 3D 9A 9B 9C 199A 597A
199 P 1A 1A 1A 1A 1A 3B 3B 3B 199A 199A
5373.15.1a 1 1 1 1 1 1 1 1 1 1
5373.15.1b 2 1 2 1 2 1 2 1 2 1
5373.15.1c 2 1 2 1 2 1 1 1 2 1
5373.15.1d 2 1 2 1 2 2 1 2 2 1
5373.15.1e 2 2 2 2 2 1 1 1 2 2
5373.15.1f 6 3 3 3 3 0 0 0 6 3
5373.15.1g 6 3 3 6 3 0 0 0 6 3
5373.15.1h 6 6 3 3 3 0 0 0 6 6
5373.15.9a 198 198 0 0 0 0 0 0 1 1
5373.15.9b 396 198 0 0 0 0 0 0 2 1