Properties

Label 53240.v.2.a1.c1
Order $ 2^{2} \cdot 5 \cdot 11^{3} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\He_{11}:C_{20}$
Order: \(26620\)\(\medspace = 2^{2} \cdot 5 \cdot 11^{3} \)
Index: \(2\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 7 & 0 & 1 & 3 \\ 8 & 5 & 1 & 1 \\ 8 & 9 & 8 & 0 \\ 0 & 8 & 3 & 6 \end{array}\right), \left(\begin{array}{rrrr} 7 & 5 & 10 & 1 \\ 2 & 7 & 7 & 10 \\ 3 & 8 & 6 & 6 \\ 1 & 3 & 9 & 6 \end{array}\right), \left(\begin{array}{rrrr} 8 & 6 & 8 & 10 \\ 10 & 8 & 2 & 8 \\ 9 & 3 & 5 & 5 \\ 5 & 9 & 1 & 5 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 5 & 3 & 0 & 0 \\ 10 & 0 & 3 & 0 \\ 10 & 8 & 7 & 9 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 9 & 5 & 2 & 0 \\ 9 & 9 & 6 & 0 \\ 5 & 8 & 8 & 1 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 6 & 10 & 0 & 0 \\ 1 & 0 & 10 & 0 \\ 0 & 10 & 6 & 1 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is normal, maximal, nonabelian, and solvable.

Ambient group ($G$) information

Description: $\He_{11}:(C_5\times Q_8)$
Order: \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\He_{11}:(C_5\times \GL(2,3))$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
$\operatorname{Aut}(H)$ $\He_{11}:C_{120}:C_2$, of order \(319440\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11^{3} \)
$W$$\He_{11}:(C_5\times Q_8)$, of order \(53240\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$\He_{11}:(C_5\times Q_8)$
Minimal over-subgroups:$\He_{11}:(C_5\times Q_8)$
Maximal under-subgroups:$C_{11}^2:F_{11}$$\He_{11}:C_4$$C_{11}:C_{20}$
Autjugate subgroups:53240.v.2.a1.a153240.v.2.a1.b1

Other information

Möbius function$-1$
Projective image$\He_{11}:(C_5\times Q_8)$