Properties

Label 5308416.by.8.BZ
Order $ 2^{13} \cdot 3^{4} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2.S_4\wr C_2.C_4$
Order: \(663552\)\(\medspace = 2^{13} \cdot 3^{4} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Generators: $\langle(3,7,11)(4,8,12)(19,20)(23,24), (3,12,7)(4,11,8)(15,24,20)(16,23,19)(17,18) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $A_4^2.S_4^2:C_2^3.D_4$
Order: \(5308416\)\(\medspace = 2^{16} \cdot 3^{4} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^8.C_3^4.C_2.C_2^5.C_2^5$
$\operatorname{Aut}(H)$ $C_2^8.C_3^4.C_2^5.C_2^3$
$W$$A_4^2:\POPlus(4,3).C_2^4$, of order \(1327104\)\(\medspace = 2^{14} \cdot 3^{4} \)

Related subgroups

Centralizer: not computed
Normalizer:$A_4^2\wr C_2.C_2^2.C_2^4$
Normal closure:$A_4^2\wr C_2.C_2^2.C_2^3$
Core:$C_2^9.C_3^4:D_4$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image not computed