Properties

Label 52800.f.60.a1.a1
Order $ 2^{4} \cdot 5 \cdot 11 $
Index $ 2^{2} \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{20}:D_{22}$
Order: \(880\)\(\medspace = 2^{4} \cdot 5 \cdot 11 \)
Index: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 9 & 8 & 1 & 0 \\ 7 & 2 & 0 & 10 \\ 9 & 0 & 2 & 8 \\ 0 & 2 & 7 & 9 \end{array}\right), \left(\begin{array}{rrrr} 5 & 8 & 0 & 1 \\ 8 & 9 & 0 & 6 \\ 3 & 2 & 1 & 10 \\ 4 & 2 & 5 & 7 \end{array}\right), \left(\begin{array}{rrrr} 6 & 5 & 1 & 0 \\ 5 & 5 & 0 & 10 \\ 6 & 0 & 5 & 5 \\ 0 & 5 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 3 & 1 & 0 & 5 \\ 0 & 5 & 0 & 0 \\ 5 & 3 & 6 & 10 \\ 1 & 5 & 0 & 8 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\operatorname{Aut}(H)$ $C_{22}.(C_2^4\times C_{20})$
$W$$C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{44}:C_{10}^2$
Normal closure:$\GL(2,11):C_2^2$
Core:$C_5\times D_4$
Minimal over-subgroups:$C_{44}:C_{10}^2$
Maximal under-subgroups:$C_{10}\times D_{22}$$C_{10}\times D_{22}$$C_{55}:D_4$$C_{55}:D_4$$D_4\times C_{55}$$C_{20}\times D_{11}$$C_5\times D_{44}$$D_4\times D_{11}$$D_4\times C_{10}$

Other information

Number of subgroups in this conjugacy class$12$
Möbius function$0$
Projective image not computed