Properties

Label 52800.f.1.a1.a1
Order $ 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Index: $1$
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 9 & 0 & 3 & 4 \\ 3 & 5 & 4 & 3 \\ 3 & 7 & 6 & 0 \\ 4 & 3 & 8 & 2 \end{array}\right), \left(\begin{array}{rrrr} 9 & 8 & 1 & 0 \\ 7 & 2 & 0 & 10 \\ 9 & 0 & 2 & 8 \\ 0 & 2 & 7 & 9 \end{array}\right), \left(\begin{array}{rrrr} 6 & 5 & 1 & 0 \\ 5 & 5 & 0 & 10 \\ 6 & 0 & 5 & 5 \\ 0 & 5 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 9 & 0 & 0 & 0 \\ 0 & 9 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 9 \end{array}\right), \left(\begin{array}{rrrr} 0 & 3 & 1 & 9 \\ 5 & 2 & 1 & 6 \\ 7 & 10 & 6 & 5 \\ 1 & 4 & 3 & 3 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\operatorname{Aut}(H)$ $C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\card{W}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$\GL(2,11):C_2^2$
Complements:$C_1$
Maximal under-subgroups:$C_2\times \GL(2,11)$$C_2\times \GL(2,11)$$\GL(2,11):C_2$$\GL(2,11):C_2$$(C_2\times \SL(2,11)):C_{10}$$\GL(2,11):C_2$$\GL(2,11):C_2$$D_4.\PGL(2,11)$$C_{44}:C_{10}^2$$C_5\times \GL(2,3):C_2^2$$C_{120}.C_2^3$$C_{10}^2.C_2^3$

Other information

Möbius function$1$
Projective image not computed