Properties

Label 52800.f.10.e1.a1
Order $ 2^{5} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\SL(2,11):C_2^2$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\left(\begin{array}{rrrr} 0 & 4 & 5 & 1 \\ 3 & 10 & 5 & 8 \\ 2 & 6 & 8 & 3 \\ 5 & 9 & 4 & 4 \end{array}\right), \left(\begin{array}{rrrr} 1 & 0 & 4 & 9 \\ 4 & 3 & 9 & 4 \\ 4 & 2 & 8 & 0 \\ 9 & 4 & 7 & 10 \end{array}\right), \left(\begin{array}{rrrr} 9 & 6 & 5 & 6 \\ 6 & 8 & 7 & 5 \\ 0 & 6 & 3 & 5 \\ 6 & 0 & 5 & 2 \end{array}\right), \left(\begin{array}{rrrr} 10 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 \\ 0 & 0 & 10 & 0 \\ 0 & 0 & 0 & 10 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, and nonsolvable.

Ambient group ($G$) information

Description: $\GL(2,11):C_2^2$
Order: \(52800\)\(\medspace = 2^{6} \cdot 3 \cdot 5^{2} \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Outer Automorphisms: $C_4$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_4\times \PSL(2,11).C_2\times D_4$
$\operatorname{Aut}(H)$ $D_4.\PSL(2,11).C_2$
$\card{W}$\(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$\GL(2,11):C_2^2$
Complements:$C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$ $C_{10}$
Minimal over-subgroups:$\GL(2,11):C_2$$D_4.\PGL(2,11)$
Maximal under-subgroups:$\SL(2,11):C_2$$\SL(2,11):C_2$$\SL(2,11):C_2$$C_{44}:C_{10}$$\GL(2,3):C_2$$C_8:D_6$$D_4\times D_5$

Other information

Möbius function$1$
Projective image not computed