Properties

Label 5280.z.528.c1.a1
Order $ 2 \cdot 5 $
Index $ 2^{4} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{10}$
Order: \(10\)\(\medspace = 2 \cdot 5 \)
Index: \(528\)\(\medspace = 2^{4} \cdot 3 \cdot 11 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ab^{25}cd^{22}, b^{6}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_4$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^2\times C_{10}$
Normalizer:$C_2^2\times C_{10}$
Normal closure:$\GL(2,3)\times C_{11}:C_5$
Core:$C_1$
Minimal over-subgroups:$C_{11}:C_{10}$$C_5\times S_3$$C_5\times S_3$$C_2\times C_{10}$$C_2\times C_{10}$$C_2\times C_{10}$
Maximal under-subgroups:$C_5$$C_2$

Other information

Number of subgroups in this conjugacy class$132$
Möbius function$0$
Projective image$F_{11}\times \GL(2,3)$