Properties

Label 5280.z.176.c1.a2
Order $ 2 \cdot 3 \cdot 5 $
Index $ 2^{4} \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times S_3$
Order: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Index: \(176\)\(\medspace = 2^{4} \cdot 11 \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ab^{25}c, b^{20}d^{11}, b^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $F_{11}\times \GL(2,3)$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$4$

The ambient group is nonabelian and solvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_{11}\times A_4).C_5.C_2^4$
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{10}\times D_6$
Normal closure:$\GL(2,3)\times C_{11}:C_5$
Core:$C_1$
Minimal over-subgroups:$C_{33}:C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$$S_3\times C_{10}$
Maximal under-subgroups:$C_{15}$$C_{10}$$S_3$
Autjugate subgroups:5280.z.176.c1.a1

Other information

Number of subgroups in this conjugacy class$44$
Möbius function$0$
Projective image$F_{11}\times \GL(2,3)$