Properties

Label 5280.l.480.a1.a1
Order $ 11 $
Index $ 2^{5} \cdot 3 \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}$
Order: \(11\)
Index: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(11\)
Generators: $c^{24}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $11$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_{40}:D_6$
Order: \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \)
Exponent: \(120\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \)
Automorphism Group: $C_3:(C_2^5.C_2^5)$
Outer Automorphisms: $C_4^2:C_2^3$, of order \(128\)\(\medspace = 2^{7} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
$W$$C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)

Related subgroups

Centralizer:$C_{24}:C_{22}$
Normalizer:$C_{24}:C_2\times F_{11}$
Complements:$C_{40}:D_6$
Minimal over-subgroups:$C_{11}:C_5$$C_{33}$$C_{22}$$D_{11}$$D_{11}$$C_{22}$$D_{11}$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_{24}:C_2\times F_{11}$