Properties

Label 5280.l.110.c1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6:Q_8$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(110\)\(\medspace = 2 \cdot 5 \cdot 11 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $a^{5}c^{96}, c^{176}, bc^{97}, c^{66}, c^{132}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $C_{24}:C_2\times F_{11}$
Order: \(5280\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{66}.C_{10}.C_2^5$
$\operatorname{Aut}(H)$ $C_2\wr C_2^2\times S_3$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$W$$D_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_{40}:D_6$
Normal closure:$C_{12}.D_{22}$
Core:$C_3:Q_8$
Minimal over-subgroups:$C_{12}.D_{22}$$C_{30}:Q_8$$C_8:D_6$
Maximal under-subgroups:$C_3:Q_8$$C_2\times C_{12}$$C_6:C_4$$C_3:Q_8$$C_3:Q_8$$C_2\times Q_8$

Other information

Number of subgroups in this conjugacy class$11$
Möbius function$-1$
Projective image$D_{12}\times F_{11}$