Properties

Label 52488.sz.9.a1
Order $ 2^{3} \cdot 3^{6} $
Index $ 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_3^4.S_3^2$
Order: \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \)
Index: \(9\)\(\medspace = 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $ad, i, c^{2}d^{2}, fi, b^{3}h^{2}, b^{2}d^{2}i^{2}, e, de^{2}, c^{3}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and supersolvable (hence solvable and monomial).

Ambient group ($G$) information

Description: $C_3^5.S_3^3$
Order: \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.S_3^3$, of order \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_3^4.D_6^2$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \)
$W$$C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_2\times C_3^4.S_3^2$
Normal closure:$C_3^5.S_3^3$
Core:$C_3^4:S_3$
Minimal over-subgroups:$C_3^5.S_3^2.C_2$
Maximal under-subgroups:$C_2\times (C_3^3.C_3^3):C_2$$C_2\times (C_3^3.C_3^3):C_2$$C_2\times (C_3^3.C_3^3):C_2$$C_3^4.S_3^2$$C_3^4.S_3^2$$C_3^4.S_3^2$$C_3^4.S_3^2$$C_2\times C_3^3.S_3^2$$C_2\times C_3^3.S_3^2$$C_2\times C_3^3.S_3^2$$C_2\times C_3^3.S_3^2$$C_2\times C_3^3:S_3^2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5.S_3^3$