Subgroup ($H$) information
| Description: | $C_2\times C_3^4.S_3^2$ |
| Order: | \(5832\)\(\medspace = 2^{3} \cdot 3^{6} \) |
| Index: | \(9\)\(\medspace = 3^{2} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Generators: |
$ad, i, c^{2}d^{2}, fi, b^{3}h^{2}, b^{2}d^{2}i^{2}, e, de^{2}, c^{3}$
|
| Derived length: | $3$ |
The subgroup is nonabelian and supersolvable (hence solvable and monomial).
Ambient group ($G$) information
| Description: | $C_3^5.S_3^3$ |
| Order: | \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \) |
| Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and supersolvable (hence solvable and monomial).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^5.S_3^3$, of order \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \) |
| $\operatorname{Aut}(H)$ | $C_3^4.D_6^2$, of order \(11664\)\(\medspace = 2^{4} \cdot 3^{6} \) |
| $W$ | $C_3^4.S_3^2$, of order \(2916\)\(\medspace = 2^{2} \cdot 3^{6} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $9$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | not computed |
| Projective image | $C_3^5.S_3^3$ |