Properties

Label 52488.sz.36.m1
Order $ 2 \cdot 3^{6} $
Index $ 2^{2} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_3\times C_{18}):\He_3$
Order: \(1458\)\(\medspace = 2 \cdot 3^{6} \)
Index: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Generators: $c^{3}, e, de^{2}, b^{2}d^{2}, i, c^{2}d^{2}, fi$ Copy content Toggle raw display
Nilpotency class: $3$
Derived length: $2$

The subgroup is nonabelian, elementary for $p = 3$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $C_3^5.S_3^3$
Order: \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and supersolvable (hence solvable and monomial).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^5.S_3^3$, of order \(52488\)\(\medspace = 2^{3} \cdot 3^{8} \)
$\operatorname{Aut}(H)$ $C_3^5.C_3^2.D_6$
$W$$C_3^3:S_3^2$, of order \(972\)\(\medspace = 2^{2} \cdot 3^{5} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_2\times C_3^4.S_3^2$
Normal closure:$\He_3.C_3^4:C_3.C_2$
Core:$C_3^4:C_3$
Minimal over-subgroups:$S_3\times C_3^3.C_3^3$$C_2\times (C_3^3.C_3^3):C_2$$C_2\times (C_3^3.C_3^3):C_2$$C_2\times (C_3^3.C_3^3):C_2$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^5.S_3^3$