Properties

Label 5236.a.748.a1.a1
Order $ 7 $
Index $ 2^{2} \cdot 11 \cdot 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_7$
Order: \(7\)
Index: \(748\)\(\medspace = 2^{2} \cdot 11 \cdot 17 \)
Exponent: \(7\)
Generators: $b^{1122}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $7$-Sylow subgroup (hence a Hall subgroup), a $p$-group, and simple.

Ambient group ($G$) information

Description: $C_{17}\times D_{154}$
Order: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(2618\)\(\medspace = 2 \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{17}\times D_{22}$
Order: \(748\)\(\medspace = 2^{2} \cdot 11 \cdot 17 \)
Exponent: \(374\)\(\medspace = 2 \cdot 11 \cdot 17 \)
Automorphism Group: $C_{11}.C_{80}.C_2^2$
Outer Automorphisms: $C_2\times C_{80}$, of order \(160\)\(\medspace = 2^{5} \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:C_2^2$, of order \(147840\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{2618}$
Normalizer:$C_{17}\times D_{154}$
Complements:$C_{17}\times D_{22}$
Minimal over-subgroups:$C_{119}$$C_{77}$$C_{14}$$D_7$$D_7$
Maximal under-subgroups:$C_1$

Other information

Möbius function$22$
Projective image$C_{17}\times D_{154}$