Properties

Label 5236.a.44.a1.a1
Order $ 7 \cdot 17 $
Index $ 2^{2} \cdot 11 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{119}$
Order: \(119\)\(\medspace = 7 \cdot 17 \)
Index: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(119\)\(\medspace = 7 \cdot 17 \)
Generators: $b^{1122}, b^{154}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $C_{17}\times D_{154}$
Order: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(2618\)\(\medspace = 2 \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Automorphism Group: $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Outer Automorphisms: $C_{10}$, of order \(10\)\(\medspace = 2 \cdot 5 \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:C_2^2$, of order \(147840\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times C_{48}$, of order \(96\)\(\medspace = 2^{5} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{2618}$
Normalizer:$C_{17}\times D_{154}$
Complements:$D_{22}$
Minimal over-subgroups:$C_{1309}$$C_{238}$$D_7\times C_{17}$$D_7\times C_{17}$
Maximal under-subgroups:$C_{17}$$C_7$

Other information

Möbius function$-22$
Projective image$D_{154}$