Properties

Label 5236.a.17.a1.a1
Order $ 2^{2} \cdot 7 \cdot 11 $
Index $ 17 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{154}$
Order: \(308\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \)
Index: \(17\)
Exponent: \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)
Generators: $a, b^{1122}, b^{476}, b^{1309}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{17}\times D_{154}$
Order: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(2618\)\(\medspace = 2 \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Quotient group ($Q$) structure

Description: $C_{17}$
Order: \(17\)
Exponent: \(17\)
Automorphism Group: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Outer Automorphisms: $C_{16}$, of order \(16\)\(\medspace = 2^{4} \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:C_2^2$, of order \(147840\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_{11}:(C_2\times C_{10}\times F_7)$
$W$$D_{77}$, of order \(154\)\(\medspace = 2 \cdot 7 \cdot 11 \)

Related subgroups

Centralizer:$C_{34}$
Normalizer:$C_{17}\times D_{154}$
Complements:$C_{17}$
Minimal over-subgroups:$C_{17}\times D_{154}$
Maximal under-subgroups:$C_{154}$$D_{77}$$D_{77}$$D_{22}$$D_{14}$

Other information

Möbius function$-1$
Projective image$C_{17}\times D_{77}$