Properties

Label 5236.a.119.a1.a1
Order $ 2^{2} \cdot 11 $
Index $ 7 \cdot 17 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{22}$
Order: \(44\)\(\medspace = 2^{2} \cdot 11 \)
Index: \(119\)\(\medspace = 7 \cdot 17 \)
Exponent: \(22\)\(\medspace = 2 \cdot 11 \)
Generators: $a, b^{476}, b^{1309}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Hall subgroup, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $C_{17}\times D_{154}$
Order: \(5236\)\(\medspace = 2^{2} \cdot 7 \cdot 11 \cdot 17 \)
Exponent: \(2618\)\(\medspace = 2 \cdot 7 \cdot 11 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:C_2^2$, of order \(147840\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \)
$\operatorname{Aut}(H)$ $C_2\times F_{11}$, of order \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
$W$$D_{11}$, of order \(22\)\(\medspace = 2 \cdot 11 \)

Related subgroups

Centralizer:$C_{34}$
Normalizer:$C_{17}\times D_{22}$
Normal closure:$D_{154}$
Core:$C_{22}$
Minimal over-subgroups:$C_{17}\times D_{22}$$D_{154}$
Maximal under-subgroups:$C_{22}$$D_{11}$$D_{11}$$C_2^2$

Other information

Number of subgroups in this conjugacy class$7$
Möbius function$1$
Projective image$C_{17}\times D_{77}$