Properties

Label 5184.og.216.dq1.c1
Order $ 2^{3} \cdot 3 $
Index $ 2^{3} \cdot 3^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times D_6$
Order: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Index: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(2,9)(5,6)(10,13)(11,12), (2,3,9)(4,6,5), (2,6,3,5,9,4), (2,3)(4,5)(7,8)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $C_4\times S_3\wr S_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2\times S_4)$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $S_3\times S_4$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
$W$$S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)

Related subgroups

Centralizer:$C_2^2\times C_4$
Normalizer:$C_{12}:C_2^3$
Normal closure:$S_3^3:D_6$
Core:$C_1$
Minimal over-subgroups:$S_3\times D_6$$S_3\times D_6$$C_2^2\times D_6$
Maximal under-subgroups:$C_2\times C_6$$D_6$$D_6$$D_6$$D_6$$D_6$$D_6$$C_2^3$
Autjugate subgroups:5184.og.216.dq1.a15184.og.216.dq1.b15184.og.216.dq1.d1

Other information

Number of subgroups in this conjugacy class$54$
Möbius function$0$
Projective image$C_4\times S_3\wr S_3$