Properties

Label 5184.lk.6.d1
Order $ 2^{5} \cdot 3^{3} $
Index $ 2 \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4\times S_3^3$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(3,6)(5,8), (1,6,3)(2,7,4)(5,9,8)(10,13)(11,12), (1,6,3)(5,9,8), (5,8,9), (4,7), (2,4,7)(5,8,9), (4,7)(8,9), (1,3)(2,4,7)(8,9)(10,11,13,12)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_4\times S_3\wr C_3$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Automorphism Group: $C_2$, of order \(2\)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3.(C_2^2\times S_4)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_2^2\times S_3^3:S_4$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
$W$$S_3^3:C_6$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)

Related subgroups

Centralizer:$C_4$
Normalizer:$D_4\times S_3\wr C_3$
Complements:$C_6$ $C_6$
Minimal over-subgroups:$S_3^3:C_{12}$$D_4\times S_3^3$
Maximal under-subgroups:$C_2\times S_3^3$$C_{12}:S_3^2$$C_2.S_3^3$$C_{12}:S_3^2$$C_2.S_3^3$$C_{12}\times S_3^2$$C_2.S_3^3$$C_2.D_6^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$C_2^2\times S_3\wr C_3$