Subgroup ($H$) information
| Description: | $C_{12}\times S_3^2$ |
| Order: | \(432\)\(\medspace = 2^{4} \cdot 3^{3} \) |
| Index: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,6,3)(2,7,4)(5,9,8)(10,13)(11,12), (1,6,3)(5,9,8), (1,6,3)(2,4,7)(5,8,9)(10,11,13,12), (5,8,9), (4,7), (2,4,7)(5,8,9), (4,7)(8,9)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $D_4\times S_3\wr C_3$ |
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
| Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_6^3.(C_2^2\times S_4)$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \) |
| $\operatorname{Aut}(H)$ | $D_6^2:D_4$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
| $W$ | $D_6^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $3$ |
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $0$ |
| Projective image | $C_2^2\times S_3\wr C_3$ |