Properties

Label 5184.ff.48.j1
Order $ 2^{2} \cdot 3^{3} $
Index $ 2^{4} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2:C_{12}$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\langle(1,11,4)(3,9,7), (1,4,11)(2,12,8)(3,7,9)(5,6,10), (5,10,6), (4,11)(7,9)(13,15,14,16), (13,14)(15,16)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_3^4:C_4^2:C_2^2$
Order: \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^4.C_2^3.C_2^5.C_2^4$
$\operatorname{Aut}(H)$ $D_6\times \GL(2,3)$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2.S_3^3$
Normal closure:$(C_3^3\times C_6).D_4$
Core:$C_2$
Minimal over-subgroups:$C_3^3:C_{12}$$C_6.S_3^2$$C_6.S_3^2$$C_6.S_3^2$
Maximal under-subgroups:$C_3^2\times C_6$$C_3:C_{12}$$C_3:C_{12}$$C_3\times C_{12}$$C_3:C_{12}$

Other information

Number of subgroups in this autjugacy class$96$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$0$
Projective image$C_3:S_3^3:C_2^2$