Subgroup ($H$) information
| Description: | $C_6.S_3^2$ |
| Order: | \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
| Index: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Generators: |
$\langle(1,11,4)(3,9,7), (4,11)(6,10)(7,9)(8,12), (1,4,11)(2,12,8)(3,7,9)(5,6,10), (5,10,6), (4,11)(7,9)(13,15,14,16), (13,14)(15,16)\rangle$
|
| Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.
Ambient group ($G$) information
| Description: | $C_3^4:C_4^2:C_2^2$ |
| Order: | \(5184\)\(\medspace = 2^{6} \cdot 3^{4} \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Derived length: | $3$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3^4.C_2^3.C_2^5.C_2^4$ |
| $\operatorname{Aut}(H)$ | $\GL(2,3).C_2^6$, of order \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
| $W$ | $S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \) |
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $96$ |
| Number of conjugacy classes in this autjugacy class | $8$ |
| Möbius function | $0$ |
| Projective image | $C_3:S_3^3:C_2^2$ |