Properties

Label 512.7530076.8.bm1
Order $ 2^{6} $
Index $ 2^{3} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4^2:C_4$
Order: \(64\)\(\medspace = 2^{6} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\langle(1,7)(2,8)(3,5)(4,6)(13,14)(15,16), (1,3)(2,4)(5,8)(6,7)(9,11)(10,12)(13,16) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Quotient group ($Q$) structure

Description: $C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Exponent: \(2\)
Automorphism Group: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Outer Automorphisms: $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_4^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $D_4^2:C_2^2$, of order \(256\)\(\medspace = 2^{8} \)
$\card{W}$\(128\)\(\medspace = 2^{7} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4^2:C_2^3$
Complements:$C_2^3$ $C_2^3$
Minimal over-subgroups:$C_2^4.D_4$$C_2^4.D_4$$C_2\wr D_4$$(C_2^2\times D_4):C_4$$C_4^2:D_4$
Maximal under-subgroups:$C_4:D_4$$C_2^3:C_4$

Other information

Number of subgroups in this autjugacy class$8$
Number of conjugacy classes in this autjugacy class$8$
Möbius function$-8$
Projective image not computed