Properties

Label 512.7530076.64.dp1
Order $ 2^{3} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^3$
Order: \(8\)\(\medspace = 2^{3} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(2\)
Generators: $\langle(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16), (1,2)(3,4)(5,6)(7,8)(9,12)(10,11)(13,15)(14,16), (1,6)(2,5)(3,8)(4,7)(9,10)(11,12)(13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $D_4^2:C_2^3$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.D_4^3$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $\PSL(2,7)$, of order \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
$\card{W}$$1$

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5$
Normal closure:$C_2\times D_4^2$
Core:$C_1$
Minimal over-subgroups:$C_2^4$$C_2^4$
Maximal under-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$

Other information

Number of subgroups in this autjugacy class$256$
Number of conjugacy classes in this autjugacy class$16$
Möbius function$0$
Projective image not computed