Properties

Label 512.419049.1.a1
Order $ 2^{9} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_4^2:D_4$
Order: \(512\)\(\medspace = 2^{9} \)
Index: $1$
Exponent: \(8\)\(\medspace = 2^{3} \)
Generators: $\langle(1,5)(2,6)(3,8)(4,7)(9,15,10,16)(11,14,12,13), (1,3)(2,4)(5,8)(6,7)(9,11) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $4$
Derived length: $3$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the radical, a direct factor, nonabelian, a $2$-Sylow subgroup (hence a Hall subgroup), and a $p$-group (hence elementary and hyperelementary).

Ambient group ($G$) information

Description: $D_4^2:D_4$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$4$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $0$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^4.(C_2^2\times D_4^2)$, of order \(4096\)\(\medspace = 2^{12} \)
$\operatorname{Aut}(H)$ $C_2^4.(C_2^2\times D_4^2)$, of order \(4096\)\(\medspace = 2^{12} \)
$\card{W}$\(256\)\(\medspace = 2^{8} \)

Related subgroups

Centralizer:$C_2$
Normalizer:$D_4^2:D_4$
Complements:$C_1$
Maximal under-subgroups:$D_4^2:C_2^2$$D_4^2:C_4$$C_2^4.C_2^4$$C_2^4.(C_2\times D_4)$$D_4^2:C_2^2$$D_4^2:C_2^2$$D_4^2:C_4$$D_4^2:C_2^2$$D_4^2:C_4$$C_4^2.(C_2\times D_4)$$C_2^4.(C_2\times D_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image not computed