Properties

Label 512.1897.256.a1.a1
Order $ 2 $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(2\)
Generators: $f$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, cyclic (hence elementary, hyperelementary, metacyclic, and a Z-group), stem, a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_2^5.\SD_{16}$
Order: \(512\)\(\medspace = 2^{9} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$6$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Quotient group ($Q$) structure

Description: $C_2^4.Q_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^4.C_2^5.C_2$
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $5$
Derived length: $3$

The quotient is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5.(D_4\times C_2^4)$, of order \(4096\)\(\medspace = 2^{12} \)
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\operatorname{res}(\operatorname{Aut}(G))$$C_1$, of order $1$
$\card{\operatorname{ker}(\operatorname{res})}$\(4096\)\(\medspace = 2^{12} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2^5.\SD_{16}$
Normalizer:$C_2^5.\SD_{16}$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_2^2$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image$C_2^4.Q_{16}$