Properties

Label 4096.brc
Order \( 2^{12} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{6} \)
$\card{Z(G)}$ 4
$\card{\Aut(G)}$ \( 2^{23} \)
$\card{\mathrm{Out}(G)}$ \( 2^{13} \)
Perm deg. not computed
Trans deg. not computed
Rank $6$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (33,34), (1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34), (1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34), (1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32), (1,4)(5,13)(6,14)(16,18), (1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29), (1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31) >;
 
Copy content gap:G := Group( (33,34), (1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34), (1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34), (1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32), (1,4)(5,13)(6,14)(16,18), (1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29), (1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31) );
 
Copy content sage:G = PermutationGroup(['(33,34)', '(1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34)', '(1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34)', '(1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32)', '(1,4)(5,13)(6,14)(16,18)', '(1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29)', '(1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11632259495833185141200357647004331728746258253459406107627717673622536065416907836915421850125361838555546912827226333103836441684449422,4096)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12;
 

Group information

Description:$C_2^5.(D_4\times C_2^4)$
Order: \(4096\)\(\medspace = 2^{12} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2^{12}.C_2^6.C_2^5$, of order \(8388608\)\(\medspace = 2^{23} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 12
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$5$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 511 2560 1024 4096
Conjugacy classes   1 59 96 16 172
Divisions 1 59 88 16 164
Autjugacy classes 1 21 18 1 41

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $6$
Inequivalent generating 6-tuples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible none not computed none
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid a^{2}=c^{4}=d^{2}=e^{2}=f^{4}=g^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([12, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 529, 61, 722, 170, 591, 135, 94469, 47249, 37469, 18761, 91398, 45714, 44382, 22218, 110599, 56083, 52255, 26155, 1219, 655, 283, 184329, 156501, 46113, 53805, 5817, 2949, 202774, 42274, 21166, 331787, 165911]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.6, G.7, G.8, G.10, G.11, G.12]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "e", "f", "f2", "g", "h", "i"]);
 
Copy content gap:G := PcGroupCode(11632259495833185141200357647004331728746258253459406107627717673622536065416907836915421850125361838555546912827226333103836441684449422,4096); a := G.1; b := G.2; c := G.4; d := G.6; e := G.7; f := G.8; g := G.10; h := G.11; i := G.12;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11632259495833185141200357647004331728746258253459406107627717673622536065416907836915421850125361838555546912827226333103836441684449422,4096)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(11632259495833185141200357647004331728746258253459406107627717673622536065416907836915421850125361838555546912827226333103836441684449422,4096)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.7; f = G.8; g = G.10; h = G.11; i = G.12;
 
Permutation group:Degree $34$ $\langle(33,34), (1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 34 | (33,34), (1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34), (1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34), (1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32), (1,4)(5,13)(6,14)(16,18), (1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29), (1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31) >;
 
Copy content gap:G := Group( (33,34), (1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34), (1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34), (1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32), (1,4)(5,13)(6,14)(16,18), (1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29), (1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31) );
 
Copy content sage:G = PermutationGroup(['(33,34)', '(1,6,4,14)(3,10,12,25)(5,16,13,18)(8,21)(9,15,24,26)(17,27)(20,30)(22,31)(33,34)', '(1,2)(3,7)(4,11)(5,8)(6,17)(9,19)(10,22)(12,23)(13,21)(14,27)(15,20)(16,28)(18,29)(24,32)(25,31)(26,30)(33,34)', '(1,3)(2,7)(4,12)(5,15)(6,10)(8,20)(9,18)(11,23)(13,26)(14,25)(16,24)(17,22)(19,29)(21,30)(27,31)(28,32)', '(1,4)(5,13)(6,14)(16,18)', '(1,5)(3,9)(4,13)(6,16)(10,15)(12,24)(14,18)(17,27)(25,26)(28,29)', '(1,5)(2,8)(3,9)(4,13)(6,18)(7,19)(10,15)(11,21)(12,24)(14,16)(17,29)(20,22)(23,32)(25,26)(27,28)(30,31)'])
 
Direct product: not computed
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $(C_2^5:Q_8)$ . $C_2^4$ (16) $(C_2^5:Q_8)$ . $C_2^4$ (6) $(C_2^5:Q_8)$ . $C_2^4$ (4) $(C_2^5:Q_8)$ . $C_2^4$ (16) all 233
Aut. group: $\Aut(C_2^5.D_8)$ $\Aut(C_2^5.D_8)$ $\Aut(C_2^5.\SD_{16})$ $\Aut(C_2^5.\SD_{16})$ all 7

Elements of the group are displayed as permutations of degree 34.

Homology

Abelianization: $C_{2}^{6} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{15}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 4075 normal subgroups (73 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2^2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $C_2^4:C_4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_2^4:C_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^5.(D_4\times C_2^4)$

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 2 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $172 \times 172$ character table is not available for this group.

Rational character table

The $164 \times 164$ rational character table is not available for this group.